3.30.46 \(\int \frac {\sqrt {a+b (c x^2)^{3/2}}}{x^4} \, dx\) [2946]

3.30.46.1 Optimal result
3.30.46.2 Mathematica [A] (verified)
3.30.46.3 Rubi [A] (warning: unable to verify)
3.30.46.4 Maple [F]
3.30.46.5 Fricas [A] (verification not implemented)
3.30.46.6 Sympy [F]
3.30.46.7 Maxima [F]
3.30.46.8 Giac [A] (verification not implemented)
3.30.46.9 Mupad [F(-1)]

3.30.46.1 Optimal result

Integrand size = 21, antiderivative size = 71 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{3 x^3}-\frac {b \left (c x^2\right )^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt {a}}\right )}{3 \sqrt {a} x^3} \]

output
-1/3*b*(c*x^2)^(3/2)*arctanh((a+b*(c*x^2)^(3/2))^(1/2)/a^(1/2))/x^3/a^(1/2 
)-1/3*(a+b*(c*x^2)^(3/2))^(1/2)/x^3
 
3.30.46.2 Mathematica [A] (verified)

Time = 1.57 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.31 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\frac {-a-b \left (c x^2\right )^{3/2}-b \left (c x^2\right )^{3/2} \sqrt {1+\frac {b \left (c x^2\right )^{3/2}}{a}} \text {arctanh}\left (\sqrt {1+\frac {b \left (c x^2\right )^{3/2}}{a}}\right )}{3 x^3 \sqrt {a+b \left (c x^2\right )^{3/2}}} \]

input
Integrate[Sqrt[a + b*(c*x^2)^(3/2)]/x^4,x]
 
output
(-a - b*(c*x^2)^(3/2) - b*(c*x^2)^(3/2)*Sqrt[1 + (b*(c*x^2)^(3/2))/a]*ArcT 
anh[Sqrt[1 + (b*(c*x^2)^(3/2))/a]])/(3*x^3*Sqrt[a + b*(c*x^2)^(3/2)])
 
3.30.46.3 Rubi [A] (warning: unable to verify)

Time = 0.19 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.08, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {892, 798, 51, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx\)

\(\Big \downarrow \) 892

\(\displaystyle \frac {\left (c x^2\right )^{3/2} \int \frac {\sqrt {b \left (c x^2\right )^{3/2}+a}}{c^2 x^4}d\sqrt {c x^2}}{x^3}\)

\(\Big \downarrow \) 798

\(\displaystyle \frac {\left (c x^2\right )^{3/2} \int \frac {\sqrt {b \left (c x^2\right )^{3/2}+a}}{c x^2}d\left (c x^2\right )^{3/2}}{3 x^3}\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {\left (c x^2\right )^{3/2} \left (\frac {1}{2} b \int \frac {1}{\sqrt {c x^2} \sqrt {b \left (c x^2\right )^{3/2}+a}}d\left (c x^2\right )^{3/2}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt {c x^2}}\right )}{3 x^3}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\left (c x^2\right )^{3/2} \left (\int \frac {1}{\frac {c x^2}{b}-\frac {a}{b}}d\sqrt {b \left (c x^2\right )^{3/2}+a}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt {c x^2}}\right )}{3 x^3}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\left (c x^2\right )^{3/2} \left (-\frac {b \text {arctanh}\left (\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{\sqrt {c x^2}}\right )}{3 x^3}\)

input
Int[Sqrt[a + b*(c*x^2)^(3/2)]/x^4,x]
 
output
((c*x^2)^(3/2)*(-(Sqrt[a + b*(c*x^2)^(3/2)]/Sqrt[c*x^2]) - (b*ArcTanh[Sqrt 
[a + b*(c*x^2)^(3/2)]/Sqrt[a]])/Sqrt[a]))/(3*x^3)
 

3.30.46.3.1 Defintions of rubi rules used

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 798
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n   Subst 
[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, 
b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
 

rule 892
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbo 
l] :> Simp[(d*x)^(m + 1)/(d*((c*x^q)^(1/q))^(m + 1))   Subst[Int[x^m*(a + b 
*x^(n*q))^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x 
] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]
 
3.30.46.4 Maple [F]

\[\int \frac {\sqrt {a +b \left (c \,x^{2}\right )^{\frac {3}{2}}}}{x^{4}}d x\]

input
int((a+b*(c*x^2)^(3/2))^(1/2)/x^4,x)
 
output
int((a+b*(c*x^2)^(3/2))^(1/2)/x^4,x)
 
3.30.46.5 Fricas [A] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 115 vs. \(2 (53) = 106\).

Time = 0.28 (sec) , antiderivative size = 206, normalized size of antiderivative = 2.90 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\left [\frac {b c x^{3} \sqrt {\frac {c}{a}} \log \left (\frac {b c^{2} x^{4} - 2 \, \sqrt {\sqrt {c x^{2}} b c x^{2} + a} a x \sqrt {\frac {c}{a}} + 2 \, \sqrt {c x^{2}} a}{x^{4}}\right ) - 2 \, \sqrt {\sqrt {c x^{2}} b c x^{2} + a}}{6 \, x^{3}}, -\frac {b c x^{3} \sqrt {-\frac {c}{a}} \arctan \left (-\frac {{\left (a b c^{2} x^{4} \sqrt {-\frac {c}{a}} - \sqrt {c x^{2}} a^{2} \sqrt {-\frac {c}{a}}\right )} \sqrt {\sqrt {c x^{2}} b c x^{2} + a}}{b^{2} c^{4} x^{7} - a^{2} c x}\right ) + \sqrt {\sqrt {c x^{2}} b c x^{2} + a}}{3 \, x^{3}}\right ] \]

input
integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^4,x, algorithm="fricas")
 
output
[1/6*(b*c*x^3*sqrt(c/a)*log((b*c^2*x^4 - 2*sqrt(sqrt(c*x^2)*b*c*x^2 + a)*a 
*x*sqrt(c/a) + 2*sqrt(c*x^2)*a)/x^4) - 2*sqrt(sqrt(c*x^2)*b*c*x^2 + a))/x^ 
3, -1/3*(b*c*x^3*sqrt(-c/a)*arctan(-(a*b*c^2*x^4*sqrt(-c/a) - sqrt(c*x^2)* 
a^2*sqrt(-c/a))*sqrt(sqrt(c*x^2)*b*c*x^2 + a)/(b^2*c^4*x^7 - a^2*c*x)) + s 
qrt(sqrt(c*x^2)*b*c*x^2 + a))/x^3]
 
3.30.46.6 Sympy [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\int \frac {\sqrt {a + b \left (c x^{2}\right )^{\frac {3}{2}}}}{x^{4}}\, dx \]

input
integrate((a+b*(c*x**2)**(3/2))**(1/2)/x**4,x)
 
output
Integral(sqrt(a + b*(c*x**2)**(3/2))/x**4, x)
 
3.30.46.7 Maxima [F]

\[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\int { \frac {\sqrt {\left (c x^{2}\right )^{\frac {3}{2}} b + a}}{x^{4}} \,d x } \]

input
integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^4,x, algorithm="maxima")
 
output
integrate(sqrt((c*x^2)^(3/2)*b + a)/x^4, x)
 
3.30.46.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\frac {\frac {b^{2} c^{3} \arctan \left (\frac {\sqrt {b c^{\frac {3}{2}} x^{3} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - \frac {\sqrt {b c^{\frac {3}{2}} x^{3} + a} b c^{\frac {3}{2}}}{x^{3}}}{3 \, b c^{\frac {3}{2}}} \]

input
integrate((a+b*(c*x^2)^(3/2))^(1/2)/x^4,x, algorithm="giac")
 
output
1/3*(b^2*c^3*arctan(sqrt(b*c^(3/2)*x^3 + a)/sqrt(-a))/sqrt(-a) - sqrt(b*c^ 
(3/2)*x^3 + a)*b*c^(3/2)/x^3)/(b*c^(3/2))
 
3.30.46.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \left (c x^2\right )^{3/2}}}{x^4} \, dx=\int \frac {\sqrt {a+b\,{\left (c\,x^2\right )}^{3/2}}}{x^4} \,d x \]

input
int((a + b*(c*x^2)^(3/2))^(1/2)/x^4,x)
 
output
int((a + b*(c*x^2)^(3/2))^(1/2)/x^4, x)